Matfys library

In this presentation, I will address recent advances in the field of
microwave quantum optics using superconducting circuits. My first focus
will be on the emerging subfield of propagating microwave
photonics. This field relies on the fact that the coupling between an
artificial superconducting atom (quantum bit) and a microwave photon
propagating in a one-dimensional transmission line can be made
strong enough to observe quantum coherent effects, without using any
cavity to confine the microwave photons. Recent results in this field
include the routing of single microwave photons on a nanosecond
timescale [1], as well as the observation of anti-bunching in the field
reflected from a single artificial atom [2]. In particular, I will discuss
the possibility to use the strong cross-Kerr effect observed
in these systems [3] to perform quantum non-demolition detection of single
microwave photons [4].
In the second part of my presentation, I will turn to the possibility of
studying more fundamental physics phenomena in this type of systems. In
1970, Gerald Moore predicted the generation of photons from an
oscillating mirror, moving close to the speed of light. The effect was
named the dynamical Casimir effect (DCE), from its resemblance to the
static Casimir effect. One can study the DCE using a single
one-dimensional transmission line terminated with a quickly tunable
boundary condition (inductance) [5], and in this system the DCE was after
40 years finally demonstrated experimentally [6]. In particular,
I will discuss how to utilise the fast non-dissipative modulation of
boundary conditions to experimentally investigate the effect of
relativistic motion on the quantum teleportation protocol [7] as well as
the twin paradox.

[1] Io-Chun Hoi, C. M. Wilson, G. Johansson, T. Palomaki, B. Peropadre, P. Delsing, Phys. Rev. Lett. 107, 073601 (2011).

[2] Io-Chun Hoi, Tauno Palomaki, Göran Johansson, Joel Lindkvist, Per Delsing and C. M. Wilson, Phys. Rev. Lett. 108, 263601 (2012).

[3] Io-Chun Hoi, C. M. Wilson, Göran Johansson, Tauno Palomaki, Thomas M. Stace, Bixuan Fan, Per Delsing, e-print arXiv:1207.1203

[4] B. Fan, A. F. Kockum, J. Combes, G. Johansson, Io-chun Hoi, C. Wilson, P. Delsing, G. J. Milburn, T. M. Stace, Phys. Rev. Lett. 110, 053601 (2013).

[5] J. R. Johansson, G. Johansson, C. M. Wilson, and Franco Nori, Phys. Rev. Lett. 103, 147003 (2009).

[6] C. M. Wilson, G. Johansson, A. Pourkabirian, M. Simoen, J. R. Johansson, T. Duty, F. Nori and P. Delsing, Nature 479, 376-379 (2011).

[7] Nicolai Friis, Antony R. Lee, Kevin Truong, Carlos Sabín, Enrique Solano, Göran Johansson, Ivette Fuentes, Phys. Rev. Lett. 110, 113602 (2013).

[1] Io-Chun Hoi, C. M. Wilson, G. Johansson, T. Palomaki, B. Peropadre, P. Delsing, Phys. Rev. Lett. 107, 073601 (2011).

[2] Io-Chun Hoi, Tauno Palomaki, Göran Johansson, Joel Lindkvist, Per Delsing and C. M. Wilson, Phys. Rev. Lett. 108, 263601 (2012).

[3] Io-Chun Hoi, C. M. Wilson, Göran Johansson, Tauno Palomaki, Thomas M. Stace, Bixuan Fan, Per Delsing, e-print arXiv:1207.1203

[4] B. Fan, A. F. Kockum, J. Combes, G. Johansson, Io-chun Hoi, C. Wilson, P. Delsing, G. J. Milburn, T. M. Stace, Phys. Rev. Lett. 110, 053601 (2013).

[5] J. R. Johansson, G. Johansson, C. M. Wilson, and Franco Nori, Phys. Rev. Lett. 103, 147003 (2009).

[6] C. M. Wilson, G. Johansson, A. Pourkabirian, M. Simoen, J. R. Johansson, T. Duty, F. Nori and P. Delsing, Nature 479, 376-379 (2011).

[7] Nicolai Friis, Antony R. Lee, Kevin Truong, Carlos Sabín, Enrique Solano, Göran Johansson, Ivette Fuentes, Phys. Rev. Lett. 110, 113602 (2013).